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1 Introduction

1.1 Charges and currents

Electric charge is a physical property of elementary particles. It is:

(i) A signed quantity, it can either be positive, negative, or zero.

(ii) It is quantised to integer multiplies of the elementary charge.

(iii) It is a conserved quantity even if particles are created or destroyed.

By convention the electron has charge −e, the proton has charge +e and the neutron has no
charge. On macroscopic scales, the number of particles is so large that charge can be considered
to have a continuous electric charge density ρ(x, t). The total charge in a volume V is then

Q =

∫
V

ρdV.

The electric current density J(x, t) is the flux of electric charge per unit area. The current
folowing through a surface S is

I =

∫
S

J · dS.

Consider a time-independent volume V with boundary S. Since charge is conserved, we have
that

dQ

dt
= −I

d

dt

∫
V

ρdV +

∫
S

J · dS = 0∫
V

(
∂ρ

∂t
+∇ · J

)
dV = 0

Since this is true for any V , we have that

∂ρ

∂t
+∇ · J = 0.

This equation of charge conservation has the typical form of a conservation law.

The discrete charge distribution of a single particle of charge qi; and position vector xi(t), is

ρ = qiδ(x− xi(t)),

J = qiẋiδ(x− xi(t)).

For N particles, it is

ρ =

N∑
i=1

qiδ(x− xi(t))

J =

N∑
i=1

qiẋiδ(x− xi(t)).

As an exercise we can see that these satisfy the equation of charge conservation.
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1.2 Fields and forces

Electromagnetism is a field theory.

Charged particles don’t interact directly, but rather by generating fields around them, which
are then experienced by other charged particles. In general we have two time-dependent vector
fields, the electric field E(x, t), and the magnetic field B(x, t).

The Lorentz force on a particle of charge q and velocity v is

F = q(E+ v ×B).

1.3 Maxwell’s equations

In this course we will explore some consequences of Maxwell’s equations.

Definition. (Maxwell’s equations)

∇ ·E =
ρ

ε0
∇ ·B = 0

∇×E = −∂B

∂t

∇×B = µ0

(
J+ ε0

∂E

∂t

)
.

Remark. We have some properties about these equations.

� Coupled linear PDEs in space and time,

� Involve two positive constants:

(i) ε0 (vacuum permittivity)

(ii) µ0 (vacuum permeability)

� Charges (ρ) and currents (J) are the sources of electromagnetic fields.

� Each equation is an equivalent integral form (see later) related via the divergece or Stokes’
theorem.

� These are the vacuum equations that apply on microscopic scales or in a vacuum. A related
macroscopic version applies in media (Part II Electrodynamics).

� The equations of consistent with each other and with charge conservation. We will show
this now.

(i) Taking the divergence of the third equation, this agrees with the time derivative of
the second equation.

(ii) For charge conversation, we have that

∂ρ

∂t
+∇ · J =

∂

∂t
(ε0∇ ·E) +∇ ·

(
−ε0

∂E

∂t
+

1

µ0
∇×B

)
= 0.
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1.4 Units

The SI unit of electric charge is the coulomb (C). The elementary charge is exactly

e = 1.602 176 634× 10−19 C.

The SI unit of electric current is the ampere or amp (A) which is equal to 1 C s−1.

The SI base units needed in electromagnetism and then the second, metre, kilogram, and ampere.
From the Lorentz force law we see that the units of E and B must be

kg m s−3A−1 and kg s−2A−1.

We sometimes refer to the units of B as the Telsa (T).

From Maxwell’s equations we can work out the units of ε0 and µ0. The values of these constants
can be calculated via experimentation as

ε0 = 8.854 · · · × 10−12 kg−1m−3s4 A2

µ0 = 1.256 · · · × 10−6 kg m s−2A−2

The speed of light is exactly

c =
1

√
µ0ε0

= 299 792 458 m s−1.

2 Electrostatics

In a time-independent situation, Maxwell’s equations reduce to

∇ ·E =
ρ

ε0
∇ ·B = 0

∇×E = 0

∇×B = µ0J

Now E and B are decoupled so we can study them seperately. Electrostatics is the study of the
electric field generated by a stationary charge distribution. We’ll be looking at

∇ ·E =
ρ

ε0
, ∇×E = 0.

2.1 Gauss’ Law

Consider a closed surface S enclosing a volume V . Integrate over V and use the divergence
theorem to obtain Gauss’ law which is ∫

S

E · dS =
Q

ε0
,

Where

Q =

∫
V

ρdV

is the total charge in V . Gauss’ law is the integral version of the first of Maxwell’s equations and
is valid generally. We get that electric flux is proportional to the total charge enclosed.

In special situations we use Gauss’ law together with symmetry to deduce from ρ, by choosing
the Gaussian surface S appropriately.
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2.1.1 Spherical symmetry

Consider a spherically symmetric charge distribution, ρ(r) in spherical polar coordinates with
total charge Q contained within an outer radius R. To have spherical symmetry, the electric field
should have the form

E = E(r)er.

This will satisfy ∇×E = 0 as required.

To find E(r) apply Gauss’ law to a sphere of radius r. If r > R then we get that∫
S

E · dS = E(r)

∫
S

er · dS

= E(r)

∫
S

dS

= E(r)4πr2 =
Q

ε0
.

Thus

E =
Q

4πε0r2
er.

So the external electric field of a spherically symmetric body depends only on the total charge,
and is equivalent to a point charge at the origin with all of the charge. The Lorentz force on a
particle of charge q in r > R is

F = qE =
Qq

4πε0r2
er.

This is the Coulomb force between charge particles. The force is repulsive if the charges have the
same sign and attractive if the charges have different sign.

In the limit as R → 0 we obtain the electric field at a point charge Q, corresponding to

ρ = Qδ(x).

There is a close analogy between the Coulomb force and the gravitational force between massive
particles, recall from IA Dynamics and Relativity that

F = −GMm

r2
er.

Both involve an inverse-square law and the product of the charges, however there are some
differences.

(i) While gravity is always attractive, electric forces can be repulsive or attractive;

(ii) Gravity is very much weaker, due to the much smaller constant of proportionality.

For example if we consider two protons, the ratio of the electric to gravitational force is 1036. On
the atom scale, gravity is irrelevant. But the + and − charges balance so accurately, that they
cancle on the planetary scale, and gravity is much more dominant.
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2.1.2 Cylindrical symmetry

Consider a cylindrically symmetric charge distribution, with ρ(r) in cylindrical polar coordinates
with totaly charge λ per unit length contained within an outer radius R. To have cylindrical
symmetry again we have that

E = E(r)er.

Again this will satisfy ∇ × E = 0. To find E(r), apply Gauss’ law to a cylinder of radius r
arbitrary length L.

If r > R then ∫
S

E · dS = E(r)

∫
S

er · dS

= E(r)

∫
S

dS

= E(r)2πrL =
λL

ε0
.

Thus we have that

E =
λ

2πε0r
er.

In the limit as R → 0 we obtain the electric field of a line charge λ per unit length, corresponding
to ρ = λδ(x)δ(y).

2.1.3 Planar symmetry

For a planar charge distribution, we have a charge density of ρ(z) in Cartesian coordinates with
total charge σ per unit area contained within a region −d < z < d of thinkness 2d.

We will assume reflective symmetry, so ρ(z) is even.

To have planar symmetry, we have E = E(z)ez. Again we have that ∇×E = 0. The reflectional
symmetry implies that E(−z) = −E(z).

To find E(Z) for z > 0 apply Gauss’ law to a ”Gaussian pillbox” of height 2z and arbitrary area
A. If z > d then ∫

S

E · S = E(z)A− E(−z)A

= 2E(z)A

=
σA

ε0

Thus we have that

E =

{
σ
2ε0

ez z < d

− σ
2ε0

ez z < −d
.

In the limit as d → 0 we obtain the electric field of a surface charge σ per unit area, corresponding
to ρ = σδ(z).
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2.1.4 Surface charge and discontinuity

Let n be a unit vector normal to the charged surface, pointing from region 1 to region 2. In our
example we have that n = ez. This discontinuity in E is given by

[n ·E] =
σ

ε0

where σ is the surface charge density and

[X] = X2 −X1

denotes a discontinuity between regions 1 and 2.

The tangential components are continuous:

[n×E] = 0.

And these two equations apply to any surface surface even if it’s curved and non-uniform.

2.2 The electrostatic potential

For a general ρ(x) we cannot determine E(x) using Gauss’ law alone. We’ll need to use the
Maxwell equation ∇ × E = 0. This implies that E is irrotational so it has an electrostatic
potential Φ(x), such that

E = −∇Φ.

Definition. (Potential difference) The potential difference or voltage between two points
x1 and x2 is

Φ(x2)− Φ(x1) =

∫
dΦ = −

∫ x2

x1

E · dx

and is path independent since ∇× E = 0 is zero and the region is simply connected, so
the field is conservative .

Definition. (Electric force) The electric force on a particle of charge q is

F = qE = −q∇Φ.

Remark. This is a conservative force associated with the potential energy

U(x) = qΦ(x).

Recall that the first Maxwell equation implies that Φ satisfies Poisson’s equation, so

−∇2Φ =
ρ

ε0
.

So we have the solution (from IB Methods) as (over all space with boundary conditions that
Φ → 0 as |x| → ∞).

Φ(x) =
1

4πε

∫
ρ(x′)

|x− x′|
d3x′.
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This is the convolution of ρ(x) with the potential of a unit point charge (which relates to our
Green’s function from IB Methods) 1

4πε|x| . Namely it is the solution to

−∇2Φ =
δ(x)

ε0

satisfying Φ → 0 as |x| → ∞. Note that is unaffected if we add an arbitrary constant to Φ (this
makes sense since Φ measures a potential difference between two points so increasing the charge
uniformly doesn’t change ). We usually choose this such that Φ → 0 as |x| → ∞. If ρ(x) does not
decay sufficiently rapidly this may not be possible. For example if we have a line charge Er ∝ 1

r ,
so we have that Φ ∝ log r which doesn’t go to zero as r → ∞.

2.2.1 Point charge

The potential due to a point charge q at the origin is

Φ(x) =
q

4πε0|x|
=

q

4πε0r
.

2.2.2 Electric dipole

Two equal and opposite charges at different positions. Without loss of generality consider charges
−q t x = 0 and +q at x = d. The potential due to the dipole is

Φ(x) =
q

4πε0

(
− 1

|x|
+

1

|x− d|

)
Apply Taylor’s theorem for a scalar field,

f(x+ h) = f(x) + (h · ∇)f(x) +
1

2
(h · ∇)2f(x) +O(||h||2).

So we get that

Φ(x) =
q

4πε0

(
−1

r
+

1

r
− (d · ∇)

1

r
+O(|d|2)

)
=

qd · x
4πε0|x|3

+O(|d|2).

In the limit as |d| → 0 with qd finite, we obtain a point dipole with electric dipole moment

p = qd.

which has potential

Φ(x) =
·x

4πε0|x|3

and electric field

E = −∇Φ =
3(p · x)x− |x|2p

4πε0|x|5
.

In spherical polar coordinates aligned with p = pez. So

Φ =
p cos θ

4πε0r2
.
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Then we get that

Er = −∂Φ

∂r
=

2p cos(θ)

4πε0r3

and

Eθ = −1

r

∂Φ

∂θ
=

p sin θ

4πε0r3
.

From our alignment we have that Eϕ = 0.

Remark. Note that

(i) Φ and E are not spherically symmetric.

(ii) They decrease more rapidly with r than a point charge since the dipole are nearly cancelling
eachother out.

A point dipole p at the origin corresponds to

ρ(x) = −p · ∇δ(x),

So we can find the associated potential Φ as

Φ(x) = p · ∇
(

1

4πε0|x|

)
.

2.2.3 Field lines and equipotentials

Electric field lines are the integral curves of E being tangent to E everywhere. Since we have that
∇ · E = ρ

ε0
, field lines begin on positive charges and end on negative charges. In electrostatics,

E = −∇Φ, so field lines are perpendicular to the equipotential surfaces of which Φ are constant.

2.2.4 Dipole in an external field

Consider a dipole p in an external field Eexternal = −∇Φ generated by distinct charges. With −q
at x and +q and x+ d, the potential energy at the dipole due to the external field is

U = −qΦ(x) +QΦ(x+ d)

= q(d · ∇)Φ(x) +O(|d|2)

In the limit at the point dipole,

U = p · ∇Φ = −p ·Eexternal

and is minimised when p is aligned with Eexternal.

2.2.5 Multipole expansion

For a general charge distribution ρ(x) confined to a ball {V : |x| < R},

Φ(x) =
1

4πε0

∫
V

ρ(x′)

|x− x′|
d3x′.
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We’ll look at the external potential at x with x /∈ V . Expand

1

|x− x′|
=

1

r
− (x′ · ∇)

1

r
+

1

2
(x′ · ∇)2

1

r
+O(|x′|3).

Which is

=
1

r

[
1 +

x′ · x
r2

+
3(x′ · x)2 − |x′|2|x|2

2r4
+O

(
R3

r3

)]
This leads to the multipole expansion of the potential,

Φ(x) =
1

4πε0

(
Q

r
+

p · x
r2

+
1

2

Qijxixj

r5
+ · · ·

)
.

The first three multipole moments:

(i) The total charge, Q =
∫
V
ρ(x) d3x.

(ii) The electric dipole moment p =
∫
V
xρ(x) d3x.

(iii) The electric quadrupole moment. This is a second order tensor which is traceless and
symmetric,

Qij =

∫
V

(3xixj − |x|2δij)ρ(x) d3x.

For ≫ R, Φ and E look increasingly like those of a point charge Q, unless Q = 0, in which case
they look like those of a point dipole, unless p = 0, etc.

2.3 Electrostatic energy

The work done against the electric force, F = qE, in bringing in a particle of charge q from
infinity (where we assume that Φ = 0 at infinity) to x is

−
∫ x

∞
F · dx = +q

∫ x

∞
∇Φ · dx = qΦ(x).

Consider assembling a confriguration of N point charges one by one. Particle i of charge qi is
brought from ∞ to xi while the previous particles remain fixed. For the first particle no work is
involved, W1 = 0. For the second particle

W2 = q2

(
q1

4πε0|x2 − x1|

)
and for the third particle

W3 = q3

(
q1

4πε0|x3 − x1|
+

q2
4πε0|x3 − x2|

)
So the total work done is

U =

N∑
i=1

Wi =

N∑
i=2

i−1∑
j=1

qiqj
4πε0|xi − xj |

.

This can be rewritten as

U =
1

2

N∑
i=1

∑
j ̸=i

qiqj
4πε0|xi − xj |

.
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or

U =
1

2

N∑
i=1

qiΦ(xi).

We can generalise to a continuous charge distribution ρ(x) occupying a finite volume V .

U =
1

2

∫
V

ρ(x)Φ(x)d3x.

Using the first Maxwell equation we ge that

U =
1

2

∫
V

(ε0∇ ·E)ΦdV

=
ε0
2

∫
V

(∇ · (ΦE)−E · ∇Φ) dV

=
ε0
2

∫
S

ΦE · dS+

∫
V

ε0|E|2

2
dV.

Let S = ∂V be a sphere of radius R → ∞. Then Φ = O(R−1) and E = O(R−2) on S while the
area of S is O(R2), so

∫
S
is O(R−1) and → 0 as R → ∞. Then

U =

∫
ε0|E|2

2
dV

where the integral is taken over all space, not just the volume where the charges are contained.

Remark. This implies that energy is stored is the electric field, even in a vacuum.

Any of expression for U suggests that the self-energy of a point charge is infinite, hence for U to
be useful, we discard all self-energies since it is unchanging and causes no force.

2.4 Conductors

In a conductor such as a metal, some charges can move freely. In electrostatics we require

E = 0, Φ = constant

inside a conductor, hence ρ = 0. Otherwise free charges would move in a response to the electric
force and a current would flow.

However a surface charge density σ can exist on the surface of a conductor, which is an equipo-
tential.

Taking n to point out of the conductor, the condition,

n ·E =
σ

ε0

becomes
n ·E =

σ

ε0
immediately outside the conductor.

The constant potential of a conductor can be set by connecting it to a battery or another
conductor.
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Definition. (Earthed/Grounded conductor) An earthed or grounded conductor is con-
nected to the ground, usually taken as Φ = 0.

To find Φ(x) and E(x) due to the charge distribution ρ(x) in the presence of conductors with
surface Si and potentials Φi we solve Poisson’s equation

−∇2Φ =
ρ

ε0

with Dirichlet boundary conditions
Φ = Φi on Si.

The solution depends linearly on ρ and {Φi}.

Let’s see an example. Take a point charge q at position (0, 0, h) in a half space (z > 0) bounded
by an earthed conducting wall. Hence we have the boundary condition Φ = 0 on z = 0. By the
method of images, the solution in z > 0 is identical to that of a dipole, with image charge −q
placed at (0, 0,−h). The wall coincides with an equipotential of the dipole, namely the line with
Φ = 0 which is the same as our boundary condition. The induced surface charge density on the
wall can be worked out from

σ

ε0
= n ·E = Ez = − 2qh

4πε0(r2 + h2)3/2
.

The total induced surface charge is∫ ∞

0

σ 2πr dr = −qh

∫ ∞

0

r dr

(r2 + h2)3/2

= −q

which is equal to the image charge.

Definition. (Capacitor) A simple capacitor constants of two seperated conductors car-
rying charges ±Q. If the potential difference between them is V , then the capacitance is
defined by

C =
Q

V

and depends only on the geometry, because Φ depends linearly on Q.

For example, consider two infinite parallel plates seperated by some distance d. Let the plate
surfaces at z = 0, z = d have surface charge densities ±σ. Then E = Eez with E = σ/ε0 = const.
for 0 < z < d, with E = 0 elsewhere. So

Φ = −Ez + const, and V = Ed.

The same solution holds approximately for parallel plates of A ≫ d2 if end effects are neglected.
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