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1 Fourier Series

1.1 Motivation

In 1807 J. Fourier was studying head conduction along a metal rod. This lead him to study
2π-periodic functions i.e. functions f : R → R was such that f(θ+ 2π) = f(θ) for all θ ∈ R then
he found that if

f(θ) =
∑
n∈Z

f̂ne
inθ

then you can write down the coefficients {f̂n} via the formula

f̂n =
1

2π

∫ 2π

0

f(θ)e−inθdθ, n ∈ Z.

And Fourier believed that this worked for any 2π-periodic function f . So computing each {f̂n}
and construcuted the sum as above, then it would return the original function. He was wrong.

1.2 Modern Treatment

Introduce a vector space V of L-periodic functions. Hence

V = {f : R → C : with f a ”nice” function, f(θ + L) = f(θ),∀θ ∈ R}.

Note for f ∈ V need only to consider values of f taken in an interval of length L, i.e. [0, L) or
(−L

2 ,
L
2 ] since periodicity covers elsewhere.

We can introduce an inner product on V with

⟨f, g⟩ =
∫ 1

0

f(θ)g(θ)dθ.

This gives the associated norm,
||f || =

√
⟨f, f⟩.

For n ∈ Z consider en ∈ V defined by en(θ) = e2πinθ/L.

⟨en, em⟩ =
∫ L

0

e2πi(n−m)θ/L dθ = Lδnm.

So {en} are orthogonal and ||en||2 = L for each n ∈ Z. This looks like IA Vectors and Matrices.

Recall that if vN is N -dim vector space equipped with usual inner product and {en}Nn=1 are

orthogonal with |en| = L, then for each x ∈ V we can write x =
∑N

n=1 x̂nen for some {x̂n}. To
find {x̂n} take the inner product of both sides with em. So

(x, em) =

N∑
n=1

x̂n(en · em) = Lx̂m

i.e

x̂n =
1

L
(x · en).
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Now could this work on V ? V is not finite dimensional so it’s not obvious. Every subset of {en}
is linearly indepedent. Ignoring this for now we assume that for all f ∈ V we can write f in our
basis {en}. Then

f(θ) =
∑
n

f̂nen(θ),

So taking the inner product as before

⟨f, em⟩ =
∑
n

f̂n⟨en, em⟩

so using the delta as before
= Lf̂m

i.e.

f̂n =
1

L
⟨f, en⟩ =

1

L

∫ 1

0

f(θ)e−2πinθ/Ldθ

Definition. (Complex Fourier series) For an L-periodic f : R → C define its complex
Fourier series by ∑

n

f̂ne
2πinθ/L

where

f̂n =
1

L

∫ 1

0

f(θ)e−2πinθ/Ldθ

are called the complex Fourier coefficients. We will write for f ∈ V

f(θ) ∼
∑
n

f̂ne
2πinθ/L

to mean the series on the right corresponds to complex Fourier series for the function on
the left.

We’d like to replace the ∼ symbol with equality, but we require a bit more than that.

If we split the complex Fourier series into the parts {n = 0} ∪ {n > 0} ∪ {n < 0} we get

∑
n

f̂ne
2πinθ/L = f̂0+

∞∑
n=1

f̂n

[
cos

(
2πnθ

L

)
+ i sin

(
2πnθ

L

)]
+

∞∑
n=1

f̂−n

[
cos

(
2πnθ

L

)
− i sin

(
2πnθ

L

)]
.

Definition. (Fourier series) For f : R → C an L-periodic function define its Fourier
series by

1

L
a0 +

∞∑
n=1

[
an cos

(
2πnθ

L

)
+ bn sin

(
2πnθ

L

)]
where

an =
2

L

∫ L

0

f(θ) cos

(
2πnθ

L

)
dθ
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and

bn =
2

L

∫ L

0

f(θ) sin

(
2πnθ

L

)
dθ

are called the Fourier cofficients for f .

If we set

cn(θ) = cos

(
2πnθ

L

)
,

sn(θ) = sin

(
2πnθ

L

)
,

then we can show, for m,n ≥ 1 that ⟨cn, cm⟩ = ⟨sn, sm⟩ = L
2 δmn and

⟨cn, 1⟩ = ⟨sm, 1⟩ = ⟨cn, sm⟩ = 0.

So we have that {1, cn, cn} is orthogonal set in V .

For an example take f : R → R, 1-periodic, such that f(θ) = θ(1 − θ) on [0, 1). For n ̸= 0 we
have

f̂n =

∫ 1

0

θ(1− θ)e−2πinθ dθ.

Integrating by parts (or using a standard Fourier integral computation) yields

f̂n = − 1

2(πn)2
, n ̸= 0,

and

f̂0 =

∫ 1

0

(θ − θ2) dθ =
1

6
.

Hence

f(θ) ∼ 1

6
−

∑
n ̸=0

e2πinθ

2(πn)2
.

so the sine terms cancel in the sum giving just cosine terms as we expect since our f function is
even.

1.3 Convergence of Fourier series

This subject is extremely subtle.

Definition. For f : R → C an L-periodic function we defined the partial Fourier series
as

(SNf)(θ) =
∑

|n|<N

f̂ne
2πinθ/L

=
1

2
a0 +

N∑
n=1

[
an cos

(
2πnθ

L

)
+ bn sin

(
2πnθ

L

)]
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Natural to ask if (SNf) → f . For this we need to specify what type of functional convergence
we’re looking at. Pointwise? Uniform? Maybe they converge in the idea of our new norm?

||SNf − f || =

√∫ L

0

|(SNf)(θ)− f(θ)|2dθ → 0

. For simplicity, we will only consider pointwise convergence.

Proposition. Let f : R → C be an L-periodic function for which on [0, L) we have the
following,
(i) f has finitely many discontinuities.
(ii) f has finitely many local maxima and minima.

Then for each θ ∈ [0, 1) we have

θ+ + θ−
2

= lim
n→∞

(SNf)(θ)

=
∑
n

f̂ne
2πinθ/L

where f(θ±) = limε→0+ f(θ ± ε). So at the points of continuity the Fourier series gives
back the original function, and at points of discontunity the Fourier series gives back the
average of the function at the disconunity neighbourhood.

We call functions which properties (i) and (ii) Dirichlet functions. For now on assume all functions
are Dirichlet functions so that ∼ means that the series on the RHS coincides with the function
on the LHS at points of continuity and to the average at points of discontinuity.

Proof. We’ll prove the proposition only for functions in C∞(R) (actually C1(R) will do.
Assume wlog that L = 2π. Examine limSNf(θ0) for some θ0 ∈ [0, 2π). By replacing f(θ) with
f(θ + θ0) can assume that θ0 = 0 wlog.

(SNf)(θ) =
∑

|n|≤N

f̂ne
in·θ

=
∑

|n|≤N

(
1

2π

∫ π

−π

f(θ)e−inθdθ

)

=
1

2π

∫ π

−π

f(θ)

 ∑
|n|≤N

e−inθ

dθ

We can sum the series as a geometric series, so

e−iNθ
2N∑
n=0

e−inθ =
sin[(N + 1

2 )θ]

sin
(
θ
2

)
when θ ∈ R\2πZ and the sum is 2N + 1 when θ ∈ 2πZ.
Define the Dirichlet Kernal as

DN (θ) =


sin[(N+ 1

2 )θ]

sin( θ
2 )

θ ∈ R \ 2πZ

2N + 1 otherwise
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For each N ≥ 0,

(i) DN is continiuous, even 2π perioidic

(ii)
∫ π

−π
DN (θ)dθ = 2π

Property (ii) follows by intergrating
∑

termwise, only 1 is non-zero. This means that

f(0) =
1

2π

∫ p

−π

iDN (θ)f(θ)dθ

So

SN (f)(0) = f(0) =
1

2π

∫ π

−π

DN (θ)[f(θ)− f(0)]dθ

now set F (θ) = θ

sin( θ
2 )

[
f(θ)−f(0)

θ

]
so we get

(SNf)(0) =
1

2π

∫ π

−π

sin[(N +
1

2
)θ]F (θ)dθ

Note that θ → F (θ) is smooth since

f(θ)− f(0)

θ
=

1

θ

∫ θ

0

f ′(t)dt =
1

θ

∫ 1

0

f ′(τθ)θdτ

Hence integrating by parts gives that

(SNf)(0)− f(0) =
1

N + 1
2

1

2π

∫ π

−π

cos[(N +
1

2
)θ]F ′(θ)dθ

→ 0 as N → ∞

For an example consider the function

f(θ) =

{
+1 0 ≤ θ < π

−1 −π ≤ θ < 0

Since f is odd, an = 0 for each n and

bn =
2

2π

∫ π

−π

f(θ) sin(nθ)dθ

=
2

π

∫ π

0

sin(nθ)dθ

=
2

nπ
[1− (−1)n]

Thus

f(θ) ∼ 4

π

∑
n odd

sin(nθ)

n
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