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1 Parametric Estimation

1.1 Review of IA Probability

1.1.1 Starting axioms

We observe some data X1, . . . , Xn iid random variables taking values in a sample space X . Let
X = (X1, . . . , Xn). We assume that X1 belongs to a statistical model {p(x; θ) : θ ∈ Θ} with θ
unknown. For example p(x; θ) could be a pdf.

Let’s see some examples

(i) Suppose that X1 ∼ Poisson(λ) where θ = λ ∈ Θ = (0,∞).

(ii) Suppose that X1 ∼ N (µ, σ2), where θ = (µ, σ2) ∈ Θ = R× (0,∞).

We have some common questions about these statistical models.

(i) We want to give an estimate θ̂ : Xn → Θ of the true value of θ.

(ii) We also want to give an interval estimator (θ̂1(X), θ̂2(X)) of θ.

(iii) Further we want to test of hypothesis about θ. For example we might make the hypothesis
that H0 : θ = 0.

Let’s do a quick reivew of IA Probability. Let X : Ω → R be a random variable defined on the
probability space (Ω,F ,P). So Ω is the sample space, F is the set of events, and P : F → [0, 1]
is the probability measure.

The cumulative distribution function (cdf) of X is FX(s) = P (X ≤ x). A discrete random
variable takes values in a countable set X and has probability mass function (pmf) given by
pX(x) = P (X = x). A continuous random variable has probability density function (pdf) fX
satisfying P (X ∈ A) =

∫
A
fX(x)dx (for measurable sets A). We say that X1, . . . , Xn are inde-

pendent if P (X1 ≤ x1, . . . , Xn ≤ xn) =
∏n

i=1 P (Xi ≤ xi) for all choices x1, . . . , xn. If X1, . . . , Xn

have pdfs (or pmfs) fX1 , . . . , fXn , then this is equivalent to fX(x) =
∏n

i=1 fXi(xi) for all xi. The
expectation of X is,

E(x) =

{∑
x∈X xpX(x) if X is discrete∫∞

−∞ xfX(x) if X is continuous
.

The variance of X is Var (X) = E[(X − E(X))2]. The moment generating function of X is
M(t) = E[etX ] and can be used to generate the momentum of a random varaible by taking
derivatives. If two random variables have the same moment generating functions, then they have
the same distribution.

The expectation operator is linear and

Var (a1X1 + · · ·+ anXn) =

n∑
i,j=1

aiaj Cov (Xi, Xj) ,

where Cov (Xi, Xj) = E[(Xi − E(Xi)(Xj − E(Xj))]. In vector notation writing X as the column
vector of Xi and a as the column vector for ai we get that

E[aTX] = aTE[X].

Similar for the variance we get that

Var
(
aTX

)
= aT Var (X) a
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where Var (X) is the covariance matrix for X with entries Cov (Xi, Xj).

1.1.2 Joint random variables

If X is a discrete random variable with pmf PX,Y (x, y) = P (X = x, Y = y) and marginal pmf
PY (y) =

∑
x∈X PX,Y (x, y), then the conditional pmf is

PX|Y (x | y) = P (X = x | Y = y) =
PX,Y (x, y)

PY (y)
.

If X,Y are continuous then the join pdf fX,Y satifies

P (X = x, Y = y) =

∫ x

−∞

∫ y

−∞
fX,Y dxdy

and the marginal pdf of Y is

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx.

The conditional pdf of X given Y is fX|Y (x | y) = fX,Y (x,y)
fY (y) .

The conditional expectation of X given Y is

E(X | Y ) =

{∑
x∈X xPX|Y (x | Y ) if X is discrete∫∞

−∞ xfX|Y (x | Y )dy if Y is continuous
.

Remark. E(X | Y ) is a function of Y so E(X | Y ) is a random variable.

We also have the law of total expectation,

E[X] = E[E[X | Y ]].

This is a consequence of the law of total probability which is

pX(x) =
∑
y

pX|Y (x | y)pY (y).

Now we have a new (but less useful) theorem similar to the tower property of expectation.

Theorem. (Law of total variance)

Var (X) = E[Var (X | Y )] + Var (E[X | Y ]) .

Proof. Write Var (X) = E[X2]− (E[X])2, so

Var (X) = E(E(X2 | Y )− (E(E(X | Y )))2

= E[E(X2 | Y )− (E(X | Y ))2] + E((E(X | Y ))2)− (E(E(X | Y )))2

= E[Var (X | Y )] + Var (E[X | Y ]) .

We also have the change of variables formula. If we have a mapping (x, y) → (u, v), a bijection
from R2 → R2, then

fU,V (u, v) = fX,Y (x(u, v), y(u, v))|det J |,
where J is the Jacobian matrix.
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1.1.3 Limit theorems

Suppose X1, . . . , Xn are iid random variables with mean µ and variance σ2. Define the sum
S =

∑n
i=1 Xi and the sample mean X̄n = Sn

n . We have the following theorems.

Theorem. (Weak Law of Large Numbers)

X̄n → µ

where → means that P
(
|X̄n − µ| > ε

)
→ 0 as n → ∞ for all ε > 0.

Theorem. (Strong Law of Large Numbers)

X̄n → µ

almost surely. So P
(
limn→∞ X̄n = µ

)
= 1.

Theorem. (Central Limit Theorem) The random variables

Zn =
Sn − nµ

σ
√
n

is approximately N (0, 1) for large n. Or we can write this as

Sn ≈ N (nµ, nσ2).

Formally this means that P (Zn ≤ z) → Φ(z) for all z ∈ R where Φ(z) is the cdf of N (0, 1).

1.2 Estimators

Suppose that X1, . . . , Xn are iid with pdf fX(x | θ) and parameter θ unknown.

Definition. (Estimator) A function of the data T (X) → θ̂ which is used to approximate
the true parameter θ is called an estimator (or sometimes a statistic). The distribution
of T (X) is the sampling distribution

For an example suppose thatX1, . . . , Xn ∼ N (µ, 1) and let µ̂ = T (x) = 1
n

∑n
i=1 Xi. The sampling

distribution of µ̂ is T (X) ∼ N (µ, 1
n ).

Definition. (Bias) The bias of a random variable θ̂ = T (X) is

bias(θ̂) = Eθ(θ̂)− θ,

where the expectation is taken over the model X1 ∼ fX(· | θ).

Remark. In general the bias might be a function of θ which is not explicit in the notation.
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Definition. (Unbiased estimator) We say that an estimator is unbiased if bias(θ̂) = 0
for all θ ∈ Θ.

So for our estimator from before, µ̂, is unbiased since

Eµ(µ̂) =
1

n

n∑
i=1

Eµ(Xi) = µ.

1.2.1 Bias-variance decomposition

Definition. (Mean squared error) The mean squared error of an estimator θ̂ is

mse(θ̂) = Eθ[(θ̂ − θ)2].

Remark. Note that the MSE is generally a function of θ like the bias. Again this is not clear
from the notation.

Proposition. (Bias-variance decomposition) For an estimator θ̂ of a parameter θ, we
have that

mse(θ̂) =
(
bias(θ̂)

)2
+Varθ(θ̂).

Proof.

mse(θ̂) = Eθ[(θ̂ − θ)2]

= Eθ

[(
θ̂ − Eθ(θ̂) + Eθ(θ̂)− θ

)2]
= Eθ[(θ̂ − Eθ(θ̂))

2] + (Eθ(θ̂)− θ)2 + 2(Eθ(θ̂)− θ) · Eθ[θ̂ − Eθ(θ̂)]

=
(
bias(θ̂)

)2
+Varθ(θ̂).

Let’s see an example. Suppose that X ∼ Binomial(n, θ) where is n is known and we want to

estimate θ ∈ [0, 1]. Let Tu = X
n be an estimator, so Eθ(Tu) =

E(X)
n = nθ

n = θ, hence this estimator

is unbiased. And mse(Tu) = Var (Tu) + bias(Tu) =
θ(1−θ)

n .

Instead if we used the estimator Tb =
X+1
n+2 = ωX

n + (1− ω) 12 where ω = n
n+2 . We get that

bias(Tb) = (1− ω)(
1

2
− θ)

Var (Tb) = ω2 θ(1− θ)

n
.

Giving that

mse(Tb) = ω2θ(1− θ)n+ (1− ω)2(
1

2
− θ)2
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1.3 Sufficient statistics

Suppose X1, . . . , Xn are iid random variables taking values in χ with pdf fX1
(· | θ). Consider θ

as fixed. Denote X = (X1, . . . , Xn).

Definition. (Sufficient statistics) A statistics T is sufficient for θ if the conditional dis-
tribution of X given T (X) does not depend on θ.

Remark. The parameter θ may be a vector, and T (X) may be a vector.

Suppose X1, . . . , Xn ∼ Binomial(1, θ) iid for some θ ∈ [0, 1]. Then

fX(x | θ) =
n∏

i=1

θxi(1− θ)1−xi

= θ
∑

xi(1− θ)n−
∑

xi

Define T (X) =
∑n

i=1 xi. Now

fX|T=t(x | T (x) = t) =
Pθ(X = x, T (X) = t)

Pθ(T (X) = t)

=
Pθ(X = x)

Pθ(T (X) = t)
=

θ
∑

xi(1− θ)n−
∑

xi(
n
t

)
θt(1− θ)n−t

=
1(
n
t

) .
Theorem. (Factorisation criterion) The statistics T is sufficient for θ if and only if
fX(x | θ) = g(T (x), θ)h(x) for some suitable g and h.

Proof. Suppose that fX(x | θ) = g(T (x), θ)h(x). We can compute

fX|T=t(x | T = t) =
Pθ(X = x, T (x) = t)

Pθ(T (x) = t)

=
g(T (x), θ)h(x)∑

x′;T (x′)=t g(t, θ)h(x
′)

=
h(x)∑

x′;T (x′)=t h(x
′)

which doesn’t depend on θ, so T (X) is sufficient.

Conversely, suppose T (X) is sufficient. We can write

Pθ(X = x) = Pθ(X = x, T (X) = T (x))

= Pθ(X = x | T (X) = T (x))P () θ(T (X) = T (x))

= h(x)g(T (X), θ).

So we’re done.

Remark. For our example before we can define T (x) =
∑

xi and g(t, θ) = θt(1 − θ)n−t and
h(x) = 1.
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Let’s see another example. Let X1, . . . , Xn be iid uniform on [0, θ] for some θ ∈ (0,∞). So

fX(x = θ) =

n∏
i=1

1

θ
1{xi ∈ [0,∞]}

=
1

θn
1{maxxi ≤ θ}1{minxi ≥ 0}

= g(T (x), θ)h(x).

1.4 Minimal sufficiency

Definition. (Minimal sufficient) A sufficient statistics T (X) is minimal sufficient if it is
a function of every other sufficient statistic. So if T ′(X) is also sufficient, then T ′(x) =
T ′(y) =⇒ T (x) = T (y) for all x, y ∈ χ.

Remark. Minimal sufficient statistics are unique up to bijection.

Theorem. Suppose T (X) is a statistics such that fX(x|θ)
fX(y|θ) is constant a function of θ if

and only if T (x) = T (y). Then T is minimal sufficient.

Let’s see an example before we prove this. Suppose that X1, . . . , Xn ∼ N (µ, σ2). Then

fX(x | µ, σ2)

fX(y | µ, σ2)
=

(2πσ2)−n/2 exp
(
− 1

2σ2

∑
(xi − µ)2

)
(2πσ2)−n/2 exp

(
− 1

2σ2

∑
(yi − µ)2

)
= exp

(
− 1

2σ2

(∑
i

x2
i −

∑
i

y2i

)
+

µ

σ2

(∑
i

xi −
∑
i

yi

))
This is constant in (µ, σ2) if and only if

∑
i xi =

∑
i yi and

∑
i x

2
i =

∑
i y

2
i therefore T (X) =(∑n

i=1 Xi,
∑n

i=1 X
2
i

)
is minimal sufficient.

Proof. Need to show that such a statistics is sufficient and minimal. First we’ll show sufficiency.
For each t pick a xt such that T (xt) = t. Now let x ∈ χN and let T (x) = t. So T (x) = T (xt), so

by the hypothesis fX(x,θ)
fX(xt,θ)

does not depend on θ. Let this be h(x) and let g(t, θ) = fX(x, θ) then

we have that fX(x, θ) = g(t, θ)h(x) so sufficient.

Now let S be any other sufficient statistic. By the factorisation criterion, there exists gS , hS such
that fX(x | θ) = GS(S(x), θ)hS(x). Suppose S(x) = S(y). Then

fX(x | θ)
fX(y | θ)

=
gS(S(x), θ)hS(x)

gS(S(y), θ)hS(y)
=

hS(x)

hS(y)

which does not depend on θ so T (x) = T (y) so T is minimal sufficient.

We know that bijections of minimal sufficient statistics are still minial sufficient statistics, so we
can write our minimal sufficient statistic for X1, . . . , Xn ∼ N (µ, σ2) as

S(X) = (X,SXX)

where X = 1
n

∑
i Xi and SXX =

∑
i(Xi −X)2, since there is a bijection between them.

Until now we used Eθ and Pθ to denote expectation and probability when X1, . . . , Xn are iid
from a distribution with pdf fX(x | θ). From now on we drop the subscript θ to simplify notation.
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Theorem. (Rao-Blackwell Theorem) Let T be a sufficient statistic for θ and let θ̃ be an

estimator for θ with E(θ̃2) < ∞, ∀θ. Define a new estimator θ̂ = E[θ̃ | T (X)]. Then for
all θ,

E[(θ̂ − θ)2] ≤ E[(θ̃ − θ)2].

This inequality is strict unless θ̃ is a function of T .

Remark. We have that θ̂(T ) =
∫
θ̃(x)fX|T (x | T )dx. By sufficiency of T , the conditional pdf does

not depend on θ so θ̂ does not depend on θ, and is valid estimator.

Proof. By the tower property of expectation,

E[θ̂] = E[E(θ̃ | T )] = E[θ̃].

So bias(θ̂) = bias(θ̃) for all θ. By the conditional variance formula,

Var
(
θ̃
)
= E

[
Var

(
θ̃ | T

)]
+Var

(
E
(
θ̃ | T

))
= E

[
Var

(
θ̃ | T

)]
+Var

(
θ̂
)

≥ Var
(
θ̂
)
.

So
mse(θ̃) ≥ mse(θ̂).

Equality is achieved only when Var
(
θ̃ | T

)
= 0 with probability 1 which requiers θ̃ to be a

function of T .

Let’s see an example of this. Suppose that X1, . . . , Xn ∼ Poisson(λ) iid. Let θ = P (X1 = 0) =
e−λ. Then

fX(x | θ) = e−nλλ
∑

xi∏
i xi!

=
θn(− log θ)

∑
xi∏

i xi!
.

By the factorisation criterion, T (X) =
∑

i xi is sufficient. Recall that
∑

xi ∼ Poisson(nλ). Let

θ̃ = 1{X1 = 0}. Then

θ̂ = E[θ̃ | T = t] = P

(
X1 = 0 |

n∑
i=1

Xi = t

)

=
P (X1 = 0,

∑n
i=2 Xi = t)

P (
∑n

i=1 Xi = t)

=
P (X1 = 0)P (

∑n
i=2 Xi = t)

P (
∑n

i=1 Xi = t)

=
e−λe−(n−1)λ ((n−1)λ)t

t!

e−nλ (nλ)t

t!

=

(
n− 1

n

)t

Hence θ̂ =
(
1− 1

n

)∑ xi
has mse(θ̂) < mse(θ̃) for all θ. We can see that as n → ∞, θ̂ → e−X =

e−λ = θ.
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Let X1, . . . , Xn ∼ Uniform([0, θ]) and suppose we want to estimate θ ≥ 0. Last time we saw that
T = maxXi is sufficient for θ. Let θ̃ = 2X1 be an estimator (unbias). Then

θ̂ = E[θ̃ | T = t] = 2E[X1 | maxXi = t]

= 2E[X1 | maxXi = t,X1 = maxXi]P (X1 = maxXi | maxXi = t)

+ 2E[X1 | maxXi = t,X1 ̸= maxXi]P (X1 ̸= maxXi | maxXit)

= 2t
1

n
+ 2E

[
X1 | X1 < t,max

i>1
Xi = t

](
n− 1

n

)
=

(
n+ 1

n

)
t.

Hence θ̂ = n+1
n maxi Xi is an estimator with mse(θ̂) < mse(θ̃).

Definition. (Likelihood) Let X = (X1, . . . Xn) have a joint pdf fX(x | θ). The likelihood
of θ is the function

L : θ → fX(x | θ).

The max likelihood estimator (MLE) is the value of θ maximizing L.
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