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1 Parametric Estimation

1.1 Review of TA Probability
1.1.1 Starting axioms

We observe some data X, ..., X, iid random variables taking values in a sample space X'. Let
X = (Xy,...,X,). We assume that X; belongs to a statistical model {p(z;0) : 0 € O} with 6
unknown. For example p(z;6) could be a pdf.

Let’s see some examples
(i) Suppose that X; ~ Poisson(A) where 6 =\ € © = (0, 00).
(ii) Suppose that X; ~ N(u,0?), where 6 = (u,02) € © =R x (0, 0).
We have some common questions about these statistical models.
(i) We want to give an estimate 6 : X — © of the true value of 6.
(ii) We also want to give an interval estimator (01(X),02(X)) of 6.
(iii) Further we want to test of hypothesis about 6. For example we might make the hypothesis
that Hy : 6 = 0.

Let’s do a quick reivew of IA Probability. Let X : Q — R be a random variable defined on the
probability space (Q, F,P). So € is the sample space, F is the set of events, and P : F — [0, 1]
is the probability measure.

The cumulative distribution function (cdf) of X is Fx(s) = P(X <z). A discrete random
variable takes values in a countable set X and has probability mass function (pmf) given by
px(z) = P(X =z). A continuous random variable has probability density function (pdf) fx
satisfying P(X € A) = [, fx(z)dz (for measurable sets A). We say that Xi,..., X, are inde-
pendent if P(X; < z1,...,X, <z,) =[], P(X; < a;) for all choices z1,...,z,. If Xq,..., X,
have pdfs (or pmfs) fx,,..., fx,, then this is equivalent to fx(z) = [[;—, fx, (z;) for all z;. The
expectation of X is,

E(z) = Y owex Tox(x) if X is discrete
a [ xfx(x) if X is continuous

The variance of X is Var (X) = E[(X — E(X))?]. The moment generating function of X is
M(t) = E[e!X] and can be used to generate the momentum of a random varaible by taking
derivatives. If two random variables have the same moment generating functions, then they have
the same distribution.

The expectation operator is linear and
n
Var (a1 X1 + -+ an Xp) = Z a;a; Cov (X;, X;),
ij=1

where Cov (X;, X;) = E[(X; — E(X;)(X; — E(Xj))]. In vector notation writing X as the column
vector of X; and a as the column vector for a; we get that

Ela’ X] = a" E[X].
Similar for the variance we get that

Var (a" X) = a” Var (X) a



where Var (X)) is the covariance matrix for X with entries Cov (X;, Xj).

1.1.2 Joint random variables

If X is a discrete random variable with pmf Px y(z,y) = P(X = 2,Y = y) and marginal pmf
Py(y) = > .cx Px,y(x,y), then the conditional pmf is

PX,Y(xvy)

If X,Y are continuous then the join pdf fx y satifies

¢y
P(X =xY =y) :/ / fx,ydady

and the marginal pdf of Y is
frt) = [ frateode

The conditional pdf of X given Y is fxy(z |y) = fo}fi((Z)y)

The conditional expectation of X given Y is

Yowex Pxy (x| Y) if X is discrete
= afxpy(z|Y)dy if Y is continuous '

E(X|Y):{

Remark. E(X |Y) is a function of Y so E(X | Y) is a random variable.
We also have the law of total expectation,
E[X] =E[E[X | Y]].

This is a consequence of the law of total probability which is

px(x) = pxy (@ [ Y)py(y).

Y

Now we have a new (but less useful) theorem similar to the tower property of expectation.

Theorem. (Law of total variance)

Var (X) = E[Var (X | Y)] + Var (E[X | Y]).

Proof. Write Var (X) = E[X?] — (E[X])?, so
Var (X) = E(B(X? | ¥) — (E(E(X | Y)))’
=E[EX?|Y) - (E(X | Y))*] +E((E(X | Y))?) - (E(E(X | Y)))?
=E[Var (X | Y)]+ Var (E[X |Y]). O

We also have the change of variables formula. If we have a mapping (x,y) — (u,v), a bijection
from R? — R?, then

fU,V(U" U) = fX,Y(x(u’ U)vy(u7v))| det J|7

where J is the Jacobian matrix.



1.1.3 Limit theorems

Suppose X1,..., X, are iid random variables with mean p and variance o2. Define the sum
S = Z?Zl X, and the sample mean X,, = Sn—" We have the following theorems.

Theorem. (Weak Law of Large Numbers)
X0 =1

where — means that P (\Xn — pl > 8) — 0 asn — oo for all e > 0.

Theorem. (Strong Law of Large Numbers)
X, = u

almost surely. So P (limn%oo X, = ,u) =1.

Theorem. (Central Limit Theorem) The random variables

_ Sp—np
- oyn

is approximately N(0, 1) for large n. Or we can write this as

Zn

Sy = N (ny,no?).

Formally this means that P (Z,, < z) — ®(z) for all z € R where ®(z) is the cdf of N(0, 1).

1.2 Estimators

Suppose that X7,..., X, are iid with pdf fx(z | ) and parameter § unknown.

Definition. (Estimator) A function of the data T'(X) —  which is used to approximate
the true parameter 6 is called an estimator (or sometimes a statistic). The distribution
of T(X) is the sampling distribution

For an example suppose that X1,..., X, ~ N (g, 1) andlet o = T'(z) = L 3°" | X;. The sampling
distribution of f is T(X) ~ N (u, 2).

Definition. (Bias) The bias of a random variable § = T(X) is
bias(f) = E¢(6) — 6,

where the expectation is taken over the model X; ~ fx (- | 6).

Remark. In general the bias might be a function of 8 which is not explicit in the notation.



Definition. (Unbiased estimator) We say that an estimator is unbiased if bias(d) = 0
for all 6 € ©.

So for our estimator from before, i, is unbiased since
1 n
Eu(f) =~ Eu(Xi) = p.
i=1
1.2.1 Bias-variance decomposition

Definition. (Mean squared error) The mean squared error of an estimator 6 is
mse(d) = Eq[(6 — 6)?].

Remark. Note that the MSE is generally a function of 6 like the bias. Again this is not clear
from the notation.

Proposition. (Bias-variance decomposition) For an estimator 0 of a parameter 6, we
have that

mse(f) = (bias(é)>2 + Varg(6).

Proof.

= (bias(é))2 + Varg(6). O

Let’s see an example. Suppose that X ~ Binomial(n,#) where is n is known and we want to
estimate 6 € [0,1]. Let T, = & be an estimator, so E¢(T,) = E(f) = "Tf = 0, hence this estimator
is unbiased. And mse(T,,) = Var (Ty,) + bias(Ty,) = 2a-9)

n

Instead if we used the estimator Tj, = fizl =wX + (1 —w)5 where w = 5. We get that
. 1
bias(Tp) = (1 — w)(§ —0)
0(1—46
Var (Tp) = wzg.
n

Giving that
1
mse(Ty) = w?0(1 — 0)n + (1 — u;)Q(5 —0)?



1.3 Sufficient statistics
Suppose X1, ..., X, are iid random variables taking values in x with pdf fx, (- | #). Consider
as fixed. Denote X = (X1,...,X,).

Definition. (Sufficient statistics) A statistics T is sufficient for 6 if the conditional dis-
tribution of X given T(X) does not depend on 6.

Remark. The parameter § may be a vector, and T'(X) may be a vector.

Suppose Xi, ..., X, ~ Binomial(1, #) iid for some 6 € [0, 1]. Then

x(x]0) = Herl — gyt

— 92@( _ 9>n Sy
Define T'(X) = Y | ;. Now

Po(X =2, T(X) =t)
Po(T(X) =1)
Po(X =z) == (1—@)n—= 1

TREX) =0 (ea-om ()

Ixir=i(@ | T(x) =t) =

Theorem. (Factorisation criterion) The statistics T is sufficient for 6 if and only if
fx(@|0)=g(T(x),0)h(x) for some suitable g and h.

Proof. Suppose that fx(z | 0) = g(T(x),0)h(x). We can compute

Fxppoile | T =1) =2 (Pe(—ﬂ(c ?(1) t)
__ 9(T(x),0)h(x)
> arir (o=t 9t Oh(2)
h(:z:)

Ez/;T(m’):t h(l‘l)
which doesn’t depend on 6, so T(X) is sufficient.

Conversely, suppose T'(X) is sufficient. We can write

Po(X =) =Py(X =2, T(X) =T(x)
_By(X = 2 | T(X) = T()}E () 6(T(X) = T(x))
= h(z)g(T(X),0)

So we're done. O

Remark. For our example before we can define T'(z) = Y z; and g(¢,0) = 6%(1 — 0)"~* and
h(z) = 1.



Let’s see another example. Let Xq,..., X, be iid uniform on [0, 8] for some 6 € (0, 00). So

—6) = Hg s € [0,00])
= einl{maxxi < 0}1{minzx; > 0}
= g(T(x),0)h(x).

1.4 Minimal sufficiency

Definition. (Minimal sufficient) A sufficient statistics T'(X) is minimal sufficient if it is
a function of every other sufficient statistic. So if 77(X) is also sufficient, then 7" (z) =
T'(y) = T(x)=T(y) for all z,y € x.

Remark. Minimal sufficient statistics are unique up to bijection.

Theorem. Suppose T(X) is a statistics such that g Ezl‘zi is constant a function of 6 if

and only if T'(z) = T(y). Then T is minimal sufficient.

Let’s see an example before we prove this. Suppose that Xl, ooy Xy ~ N (1, 0%). Then

fx(x|p0®) _ (2m0®) "/ exp (- 252
)

Ix(y | po?) (27TU2)_"/26XP( 397 Z (yi — )
+ B
o2
This is constant in (u,0?) if and only if ZZ T, = Zl y; and >, 27 = > y? therefore T(X) =

(X8, Xi, >0, X?) is minimal sufficient.

Proof. Need to show that such a statistics is sufficient and minimal. First we’ll show sufficiency.
For each ¢ pick a x; such that T'(z;) = t. Now let € x~ and let T'(z) =¢. So T'(z) = T'(x¢), so

by the hypothesis fx((x %) does not depend on 6. Let this be h(zx) and let g(¢,0) = fx(x, ) then

we have that fx(z,0) = g(t 0)h(zx) so sufficient.

Now let S be any other sufficient statistic. By the factorisation criterion, there exists gg, hg such
that fx(x | 0) = Gs(S(x),0)hs(x). Suppose S(x) = S(y). Then

fx(x]0) _ gs(S(x),0)hs(x) _ hs(z)
fxl10)  gs(S),0)hs(y)  hs(y)
which does not depend on 6 so T'(x) = T'(y) so T is minimal sufficient. O

We know that bijections of minimal sufficient statistics are still minial sufficient statistics, so we
can write our minimal sufficient statistic for X1, ..., X,, ~ N(u,0?) as

S(X) = (Y, Sxx)
where X = 1 3. X; and Sxx = Y_,(X; — X)?, since there is a bijection between them.

Until now we used Ey and Py to denote expectation and probability when X;,...,X,, are iid
from a distribution with pdf fx (z | §). From now on we drop the subscript 6 to simplify notation.



Theorem. (Rao-Blackwell Theorem) Let T be a sufficient statistic for  and let 0 be an
estimator for 6 with E(6?) < oo, V6. Define a new estimator = E[0 | T(X)]. Then for
all 6,

E[(0 - 0)?] < [0 — 0)?].

This inequality is strict unless 6 is a function of 7.

Remark. We have that 6(T) = S é(x)fX‘T(x | T)dz. By sufficiency of T', the conditional pdf does
not depend on 6 so 6 does not depend on 6, and is valid estimator.

Proof. By the tower property of expectation,

So bias(d) = bias(f) for all 6. By the conditional variance formula,

Var (8) =E [Var (8| T)| + Var (E (8] T))
—E [Var (é | T)} + Var (9)
> Var (é) .
> mse(d) > mse(d).

Equality is achieved only when Var (é | T ) = 0 with probability 1 which requiers 6 to be a
function of T O

Let’s see an example of this. Suppose that Xi,..., X,, ~ Poisson(\) iid. Let § = P(X; =0) =

e~ *. Then
e AN wi B 9”(—log0)2“i

[Tzt IL; =!
By the factorisation criterion, T'(X) = ", x; is sufficient. Recall that ) z; ~ Poisson(n\). Let
0 =1{X; = 0}. Then

92E[9~|T:t}:IF’<X1:0|ZXi:t>
i=1

_PX =030, X =t)
P (s Xi=t)
P =PRI, Xi=1)
P (i Xi=t)
B e—Ae—(n—nA((n—;)k)t B <n 1>t
= PO ==

fx(z|0)=

X

)Zzi’ has mse(é) < mse(é) for all 6. We can see that as n — oo, 0 — e X =

Hence § = (1 —

1
n
e =0.



Let X1,..., X, ~ Uniform([0, §]) and suppose we want to estimate § > 0. Last time we saw that
T = max X; is sufficient for 6. Let § = 2X; be an estimator (unbias). Then

0 =E[f | T =t] = 2E[X, | max X; = ]
=2E[X; | max X; = ¢, X7 = max X;|P(X; = max X; | max X; = 1)
+ 2E[X; | max X; = t, X7 # max X;|P(X; # max X; | max X;t)

1 —1
— 2t~ 1 9K [Xl | X, < t, max X; :t} (” )
n i>1

n
1
-(57)
n

max; X; is an estimator with mse(d) < mse(6).

n+1

n

Hence § =

Definition. (Likelihood) Let X = (X1,...X,,) have a joint pdf fx(z | 8). The likelihood
of 6 is the function

The max likelihood estimator (MLE) is the value of § maximizing L.
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